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The application of continuous wavelet transform (CWT) anal-
ysis technique is presented to analyze multiple-quantum-filtered
(MQF) 23Na magnetic resonance spectroscopy (MRS) data. CWT
cts on the free-induction-decay (FID) signal as a time-frequency
ariable filter. The signal-to-noise ratio (SNR) and frequency res-
lution of the output filter are locally increased. As a result, MQF
quilibrium longitudinal magnetization and the apparent fast and
low transverse relaxation times are accurately estimated. A de-
eloped iterative algorithm based on frequency signal detection
nd components extraction, already proposed, was used to esti-
ate the values of the signal parameters by analyzing simulated

ime-domain MQF signals and data from an agarose gel. The
esults obtained were compared to those obtained by measurement
f signal height in frequency domain as a function of MQF prep-
ration time and those obtained by a simple time-domain curve
tting. The comparison indicates that the CWT approach pro-
ides better results than the other tested methods that are gener-
lly used for MQF 23Na MRS data analysis, especially when the

SNR is low. The mean error on the estimated values of the
amplitude signal and the apparent fast and slow transverse relax-
ation times for the simulated data were 2.19, 6.63, and 16.17% for
CWT, signal height in frequency domain, and time-domain curve
fitting methods, respectively. Another major advantage of the
proposed technique is that it allows quantification of MQF 23Na
ignal from a single FID and, thus, reduces the experiment time
ramatically. © 2000 Academic Press

Key Words: continuous wavelet transform; multiple-quantum-fil-
tered 23Na signal; magnetic resonance spectroscopy; quantification.

1. INTRODUCTION

Multiple-quantum-filtered (MQF)1 23Na magnetic resonan
spectroscopy (MRS) has been proposed as a means to pa
discriminate between intra- and extracellular Na1 in tissue (1).
The overwhelming advantage of multiple-quantum (MQ) fi
techniques is that they allow noninvasive measurements
thus, can be applied to humans. In general, some extrace

1 Abbreviations used: MQF, multiple-quantum filtered; TQF, triple-qu-
um filtered; DQF, double-quantum filtered; SQ, single quantum; MQ, mu
uantum; MR, magnetic resonance; MRS, magnetic resonance spectro
WT, continuous wavelet transform; MPH, maximum peak height; S
ignal-to-noise ratio; FID, free induction decay.
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sodium signal also passes through a MQ filter (2); however
his signal is relatively insensitive to possible changes in
racellular sodium (3, 4). MQF 23Na MRS has also been used
probe structural information in partially disordered biolog
systems such as cartilage (5). If this technique is to be of us
in studies of intracellular Na1 or for obtaining structural info-

ation, it must allow for accurate quantification of the
erved MRS signal.
The MQF MRS signals can be recorded using the p

equence (6)

p/ 2–t / 2–p–t / 2–p/ 2–d–p/ 2–tacq,

where t and d are the MQ preparation and evolution tim
respectively. The first part of this sequence is a stan
spin-echo sequence. The secondp/2 pulse creates the M
coherences, which evolve duringd. The finalp/2 pulse is th
detection pulse, which transfers the coherence from the i
ible MQ coherences to an observable single-quantum
coherence. Double-quantum (DQF)- or triple-quantum (TQ
filtered signals are selected by appropriate phase cycling6).

The collected MQF free induction decay (FID) is compo
of two signal components, one from the inner transition an
other from the outer transitions. In an isotropic case (6), the
inner and outer transitions have the same chemical shif
signal amplitude values but opposite phases and differen
constants called apparent slow (T*2s) and fast (T*2f) transvers
relaxation times, respectively. Thus the observed signa
difference of two equal amplitude exponential functions.
amplitude of each MQF FID is also dependent on the pr
ration timet and the relaxation timesT2s and T2f. A biexpo-

ential function is thus the best model to represent the M
23Na MRS signal in an isotropic case. However, the si
model becomes complicated in nonisotropic cases, su
cartilage (7–9), where the parameter representing the qua
polar splitting interaction must be included in the signal mo

The most commonly used method for quantification of M
23Na signal is based on measurement of signal height in-
quency domain (10). It requires acquisition of a number

e
py;
,
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342 SERRAI ET AL.
MQF FIDs at differentt values. The MQF FIDs are th
Fourier transformed and the spectral maxima are fit to a
ponential function to estimate the MQF equilibrium longitu
nal magnetization (M 0), T2s, and T2f. We will refer to this
method as the maximum peak height (MPH) method. A m
drawback of this method is that it requires a long experim
time because several MQF FIDs at differentt values have to b
collected. The other possible technique to quantify MQF23Na
signal is a classical time-domain curve fitting method. T
method can be used to quantify MQF signal from a single
and, thus, it does not suffer from the long experiment tim
similar approach may be used in the frequency domain. H
ever, these methods do not perform well at low signal-to-n
ratio (SNR).

We propose the use of the wavelet transform metho
analyze MQF23Na signal. Wavelet transform has found ap-
cations in a number of disciplines including MRS (11, 12). The
advantage of wavelet transform is due to the fact it can be
to approximate signals according to scale resolution using
of prototype functions called wavelets. It allows representa
of the original data in a two-dimensional plane in which b
frequency and time information are retained. The contin
form of the transform (CWT) was proposed as a quantifica
method in MRS signal processing. It has been succes
tested for quantification of1H and 31P MRS time-domain da
(13) and for analysis of solid-state13C MRS signals (14). It has
also been used to eliminate the solvent peak in unsuppr
1H MRS data and to compensate for eddy-currents arti
(15). In this paper, we have used the same approach as in
(13) and (14) for quantification of MQF23Na signal.

The objectives of this study were (1) to evaluate the ab
f CWT analysis in estimatingM 0, T*2f, andT*2s values in the

absence of residual quadrupolar splitting, from a single t
domain MQ-filtered23Na MRS signal while effectively redu-
ing the experiment time; and (2) to determine whether C
analysis provides better results compared to previously
MQ-filtered data analysis methods, especially when the SN
low.

2. THE CONTINUOUS WAVELET TRANSFORM
IN MRS SIGNAL PROCESSING

CWT analyzes a nonstationary signal by transforming
input time domain into a time-scale domain (16). Through
ranslation and dilation operations, CWT decomposes the
al according to a set of functions deduced from a de
rototype function, assumed to be well localized in both
nd frequency domains.
In mathematical terms, CWT of a signals(t) of a finite

energy with respect to a prototype functiong(t) in the time
domain is given by

Sa~b! 5 , s,ga,b . 5
1

a E s~t! ga,b* S t 2 b

a Ddt, [1]
x-

r
nt

s
D
A

-
e

to

ed
set
n

s
n
lly

sed
ts
fs.

y

e-

T
ed
is

s

ig-
d
e

with ga,b(t) 5 (1/a) g((t 2 b)/a), characterized by two p-
rameters, the scale or dilation parameter noteda (a . 0) and
the translation parameter notedb (b [ R). The asterisk stand
for the complex conjugate.

In the Fourier domain, Expression [1] takes the form

Sa~b! 5
1

2p E ŝ~v! ĝa,b* ~av!eivbdv, [2]

whereŝ andĝ are the Fourier transforms of the signals and of
the waveletg.

Any prototype functiong(t) belonging toL 2(R) is called an
analyzing wavelet if it complies with the so-called admiss
ity condition (17). The transform in Eq. [1] maps the signal
a two-dimensional functionSa(b) on the time-scale doma
plane (a, b). This operation is equivalent to a particu
filter-bank analysis in which the relative frequency bandwi
(Dv/v) are constant and related to the parametersa, b and to
he frequency properties of the waveletg.

Considers(t) a noiseless MRS time-domain signal co
posed of one damped complex sinusoid decaying with
given by

s~t! 5 A expS2t

T*2
Dexp~i ~vst 1 w!!, [3]

whereA,T*2, v s, andw are the resonance amplitude, appa
relaxation time, angular frequency, and phase, respective

To achieve a correct analysis of the signals(t), regularity
and suitable time-frequency bandwidth product are require
g. The most commonly used analyzing wavelet has bee
so-called Morlet wavelet written as (16, 17)

g~t! 5 expS2t 2

2 Dexp~iv0t! 1 c~t!, [4]

here c(t) is a correction term to enforce the admissib
ondition. Forv0 . 5, the termc(t) is numerically negligibl

andg(t) is practically applicable. One can check this prop
by taking the Fourier transform ofg,

ĝ~v! 5 Î2p expS2~v 2 v0!
2

2 D 1 ĉ~v!, [5]

hich approaches to zero whenv # 0 (18). The termĉ(v) is
he Fourier transform ofc(t). The Morlet wavelet can be se
as a bandpass filter centered atv 5 v 0/a weighted by th
factor 1/a. Due to the causality of the MQF23Na MRS signal
(s(t) [ R1), our conventions (a, b [ R1 3 R1) for the
time-frequency display are the same as in Ref. (11).

Substitutings(t) andg(t) for Eqs. [3] and [4], respectivel
in Eq. [1] and referring to (13), the CWT ofs(t) is given by
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343CONTINUOUS WAVELET TRANSFORM ANALYSIS OF23Na SIGNAL
Sar
~b! 5 Îp

2
AFexpSar

2 2 2bT*2
2T*2

2 DG
3 @17Î12exp~2a! 2#exp~i ~vsb 1 w!!, [6]

wherear is the final dilation parameter value obtained at
convergence of the used iterative algorithm (13), with a 5
[(ar /T*2) 2 (b/ar)] and the signs7 are conditioned by the sig

f a.
A simple nonlinear regression algorithm (19) applied on th

modulus of the above equation gives the values ofA andT*2,
hereas the angular frequencyvs and phasew are linearly

estimated from the phase ofSar(b).
Now, consider a noiseless MQF23Na signal obtained usin

a constant preparation timet and a negligibly small evolutio
time d in the absence of the residual quadrupolar spli
interaction. It is given by (6)

s~t,t! 5 A~t!FexpS2t

T*2s
D 2 expS2t

T*2f
DGexp~i ~vst 1 w!!,

[7]

here

A~t! 5 M0KMQFexpS2t

T2s
D 2 expS2t

T2f
DG . [8]

KMQ is a constant equal to 3/20 for DQF23Na signal and 9/4
for TQF 23Na signal (6).

Using the same procedure as described in Ref. (13) and
ollowing the above steps, the CWT ofs(t, t) is given by

Sar
~b,t! 5 A~t!Îp

2FFexpSar
2 2 2bT*2s

2T*2s
2 DG

3 @1 7 Î1 2 exp~2a1!
2#

2 FexpSar
2 2 2bT*2f

2T*2f
2 DG

3 @1 7 Î1 2 exp~2a2!
2#Gexp~i ~vs 1 w!!,

[9]

where a 1 5 [(ar /T*2s) 2 (b/ar)] and a 2 5 [(ar /T*2f) 2
(b/ar)]. The values ofA(t), T*2s, and T*2f are nonlinearl

stimated from the modulus of Eq. [9]. SubstitutingT2s andT2f

for T*2s, T*2f values in Eq. [8], the value ofM 0 is recovered. Th
values ofvs and w are linearly estimated from the phase

ar(b, t).
In the real case, the MQF23Na MRS signals are collect

with noncorrelated random noise. In order to analyze the
accurately, the noise contribution should be reduced in
e

g

f

ta
e

result ofSar(b, t). Both v0 andar values have to be increas
by the same factorf. The central frequency of the wavele
held focused on the signal frequencyvs 5 ( f z v 0)/ar . This
effectively reduces the bandwidth (Dv/v) of the filter. The
shape of the signal recovered from the output filter approa
to Eq. [9] (13, 15).

Starting values are required for the analyzing frequencv0,
ranslation parameterb, and dilation parametera of the Morlet
wavelet when running the iterative algorithm described
Refs. (13) and (14).

3. MATERIAL AND METHODS

The accuracy and the efficiency of the proposed CWT a
ysis were evaluated on MQF23Na simulated signal and da
from an agarose gel. The results obtained were compar
those obtained by time-domain curve fitting and MPH te
nique. The biexponential model was used in all the metho
analyze the MQF23Na MRS data.

For CWT analysis, the iterative procedure described in13)
was used for each MQF23Na MRS signal. The starting value
the analyzing frequencyv0 of the wavelet was set to 10 so t
the admissibility condition is satisfied. The initial value of
dilation parametera was taken as 1. Because both of the si
components of the MQF23Na FID decay with the same fr-
quency, the value of translation parameterb was fixed to 12 fo
all the FIDs (see Ref.13 for more details). Equation [9] wa

sed in estimating the values ofT*2s, T*2f, andA(t), and Eq. [8
was used to obtain theM 0 value.

For the time-domain curve fitting, each FID signal was
phase corrected such that the imaginary part of the signa
contained noise. The real part of the signal was then fit to
[7] to estimate the values ofA(t), T*2s, andT*2f. The value o
M 0 for each signal FID was calculated using Eq. [8].

For the MPH method, the MQF FIDs were Fourier tra
formed and the signal maxima for varioust values were fit t

PeakHeight5 A0FexpS2t

T2s
D 2 expS2t

T2f
DG . [10]

he value ofM 0 was determined using the relation

M0 5
A0

KMQ~T*2s 2 T*2f!
. [11]

he three tested procedures for the analysis of MQF23Na
signal were implemented in Interactive Data Language (
(Research Systems, Inc., Boulder, CO).

Synthetic data. Synthetic MQF23Na MRS FIDs based o
the biexponential model of Eq. [7] with a randomly unifo
added noise were generated using a program written in
A(t) was substituted for Eq. [8] in Eq. [7]. The sampl
frequency was set to 10 kHz and 1024 complex data p
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344 SERRAI ET AL.
were used to simulate each FID. The value ofM 0KMQ was se
to 100 arbitrary units (au). Fourteen different values ot
ranging from 0.5 to 40 ms were used to synthesize 14 FID
a given MQF data set. First the effect of changing the SNR
evaluated. For this purpose, three different MQF data sets
containing 14 FIDs, were generated with white noise leve
1 au and SNR ranging from 17 to 33 dB and 10 au and
ranging from 1 to 11 dB and 20 au and SNR ranging from
5 dB. The values ofT*2f and T*2swere set to 2 and 18 m
respectively. Second, the effects of varying theT*2f while
eepingT*2s equal to 18 ms with the three noise levels w

investigated. For noise level of 1 au, the SNR is ranged
6 to 29 dB. For noise level equal 10 au, the SNR varies
1 to 7 dB and for noise level equal 20 au, the SNR cha
from 0 to 2 dB.T*2f was set to 1, 2, and 4 ms. Last, the effe
of changingT*2s while T*2f was held equal to 2 ms were stud
at the same three noise levels.T*2s was set to 16, 18, and 20 m

he corresponding SNR values range from 14 to 29 dB
oise level of 1 au, from 0 to 8 dB for noise level of 10 au,

rom 0 to 2 dB for noise level of 20 au.

TQF 23Na signal from agarose gel.An agarose gel samp
was prepared by dissolving 6% agarose in a 300 mM N
solution with mild heating followed by cooling the sample
room temperature. TQF23Na MRS data from the gel samp
were obtained at 400 MHz on a vertical bore spectrom
(Bruker Instruments, Billerica, MA) using the pulse seque
described in the introduction. The acquisition parameters
384 accumulations,62500 Hz spectral width, 512 data poin

nd 250 ms repetition time. Twenty-eight FIDs were colle
sing different t values ranging from 0.4 to 80 ms. T

evolution timed was kept as short as possible (10ms) to allow

FIG. 1. Variation of MQF 23Na MRS signal intensity as a function
time-domain FID at optimumt 5 10 ms.
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a phase change between the last two radiofrequency p
Both MPH and CWT methods were used to analyze the
(Fig. 1).

4. RESULTS

Synthetic data. In the first test, the efficiency of CW
analysis when the SNR is low was evaluated. The re
reported in Table 1 show that CWT provides more accu
results, with low noise levels, for the signal parameters, e
cially the M 0KMQ value, than those obtained by time-dom
curve fitting or MPH method. As shown in Fig. 2, time-dom
curve fitting overestimatesM 0KMQ values, whereas CWT
more reliable. This is achieved by shortening the sup
length (frequency bandwidth) of the wavelet in the freque
domain; only the signal frequency passes through. The sig
thus isolated from noise. As a consequence, theM 0KMQ value
is accurately estimated.

The effects of varyingT*2f with different noise levels we
considered in the second test. The results obtained show
CWT analysis provides better results in estimating this pa
eter than time-domain curve fitting (Table 2). Because the
component of the MQF23Na signal decays very rapidly wi
time, the data resolution is poor in the beginning of the sig
CWT is more reliable in estimating theT*2f than time-domai
curve fitting, which gave less accurate results even with
SNR.

In the last test, the effect of varyingT*2s, and SNR wa
evaluated. The results reported in Table 3 show that C
analysis provides better results than both the time-do
curve fitting and the MPH method, especially with low SN

preparation timet in the agarose gel sample. The inset is the correspo
of
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Both the time-domain curve fitting and the MPH met
appear to be disturbed by the SNR factor.

TQF 23Na signal from agarose gel.To further demonstra
he usefulness of the CWT as a TQF23Na MRS quantificatio
technique, we have analyzed data from an agarose gel s
and compared the results to those obtained by the
method. CWT analysis and the MPH method provided sim
results (Table 4). The SNR values for the first acquired
the one at optimumt (t 5 10 ms), and the last FID are 29, 3
and 14 dB, respectively. The small differences in the estim
relaxation times values could be explained by the fact
CWT analysis estimates the apparent relaxation time v
whereas MPH provides the values ofT2s and T2f. The fas
relaxation time is less sensitive to field inhomogeneity eff
than the slow one. The difference in the estimatedT2f values is

TABLE 1
Estimated Values of the MQF MRS Parameters Obtained by

WT, MPH, and Time-Domain Curve Fitting of the Simulated
ata Sets with Three Different Noise Levels

Actual
values MPH

Time-domain
curve fitting CWT

Noise level5 1
A (au) 100 106.9 1026 4 100.16 0.3
T*2f (ms) 2 2.1 1.976 .02 2.016 .01
T*2s (ms) 18 16.7* 17.56 0.1 17.96 .07

Noise level5 10
A (au) 100 97.8 896 3* 98.36 2.0
T*2f (ms) 2 2.0 1.366 .09* 1.996 .06
T*2s (ms) 18 17.8 17.56 1.0 18.26 0.3

Noise level5 20
A (au) 100 97.5 114.56 19* 101.6 1.1
T*2f (ms) 2 2.1 2.366 0.21 2.16 0.1
T*2s (ms) 18 17.1 18.46 3.40 18.36 0.4

Note.Each MQF MRS data set contains 14 FIDs. The results obtain
CWT and time-domain curve fitting are the mean value6 standard deviatio
(SD). For comparison, the estimated values ofT*2f andT*2s are also reported

ables 2 and 3, respectively. The asterisk indicates that the estimated
ter values are significantly different than the expected ones.

FIG. 2. Comparison between time-domain curve fitting and CWT ana
or calculation ofM 0KMQ at different noise levels for synthetic data.
ple
H
r
,

ed
at
es

ts

more related to the efficiency of the methods. As shown ab
CWT is more reliable in estimating this parameter than M
method. The estimation ofT2s is more affected by the fie
inhomogeneity when using CWT, which provides the bro
ened form ofT2s, e.g.,T*2svalue.

5. DISCUSSION

A technique based on CWT analysis has been propose
the analysis of MQF23Na data. Using the same procedure a
(13), CWT is able to extract the signal information without a

y

am-

is

TABLE 2
Estimated T*2f Values Obtained by CWT, MPH, and Time-

Domain Curve Fitting from Simulated MQF MRS Data with
Three Different Noise Levels

Noise level
Actual value

(ms) MPH
Time-domain
curve fitting CWT

1 1 1.1 1.26 .03 1.06 .02
10 1 1.1 0.46 .04* 1.06 .01
20 1 0.9 1.96 0.2* 1.16 .08
1 2 2.1 1.96 .02 2.06 .01

10 2 2.0 1.46 0.1* 1.96 .06
20 2 2.1 2.46 0.2 2.16 0.1
1 4 4.2 4.26 .02 4.06 .01

10 4 4.1 3.56 0.2* 3.96 .01
20 4 4.5* 3.26 0.1* 3.96 .07

Note.The values ofA andT*2s are 100 au and 18 ms, respectively. Each
et contains 14 FIDs. Both CWT and time-domain curve fitting estimat
arameter values from a single FID. Their shown results are the mean v6
D. The asterisk indicates that the estimated parameter values are not

he expected ones.

TABLE 3
Estimated T*2s Values Obtained by CWT, MPH, and Time-
omain Curve Fitting from Simulated MQF MRS Data with
hree Different Noise Levels

Noise level
Actual value

(ms) MPH
Time-domain
curve fitting CWT

1 16 14.8* 14.76 0.1* 15.96 0.1
10 16 15.8 15.16 0.4 16.46 0.1
20 16 23.0* 10.06 0.6* 17.06 0.2
1 18 16.9 17.56 0.1 17.96 .07

10 18 17.8 17.56 1.0 18.26 0.3
20 18 17.1 18.46 3.4 18.36 0.4
1 20 18.5 18.66 0.1 19.86 .05

10 20 19.8 20.16 0.3 19.46 .03
20 20 17.8 15.86 1.1* 18.96 0.1

Note. The values ofA and T*2f are 100 au and 2 ms, respectively. E
nalyzed data set contains 14 FIDs. The results shown from CWT

ime-domain curve fitting are the mean value6 SD of the 14 FIDs. Th
sterisk indicates that the estimated parameter values are significantly d

rom the actual ones.
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346 SERRAI ET AL.
prior knowledge of the signal parameters to be determ
Compared to time-domain curve fitting and the MPH met
CWT analysis appears efficient in obtaining accurate estim
of the values of the MQF23Na signal parameters:M 0, T*2s,
andT*2f.

The low SNR may affect the accuracy of the obtai
results. By shortening the support length of the wavelet in
frequency domain, the noise contribution in the data is red
accordingly. Thus, the method provides better results a
SNR than the time-domain curve fitting method.

The effect of poor signal resolution on the parameter
mation has been verified. The obtained results on both o
apparent relaxation times demonstrate that CWT is les
fected by the signal resolution than time-domain curve fi
and the MPH method.

The MPH method is the most commonly used techniqu
MQF 23Na MRS signal processing. It allows an estimation

2f andT2s values. Noise filtering by using line broadening m
ncrease the SNR and improve the accuracy of the re
btained by the MPH technique. However, its major drawb

s the long experiment time. CWT provides similar results
rocessing only one single MQF23Na MRS signal. Data co-

lection time is then considerably reduced. This represe
major advantage for applications of MQF23Na MRS techniqu
to humans. Furthermore, phase corrections and line broad
are not required with CWT analysis.

6. CONCLUSION

In summary, we demonstrate that CWT analysis prov
better quantification of MQF23Na MRS signal than the MP
method and time-domain curve fitting, especially when
SNR is low. Another major advantage of CWT analysi
that it allows quantification of the MQF signal from a sin
FID and, thus, reduces the experiment time dramatic
The analysis data from the agarose gel sample demon
that the CWT analysis is suitable for analyzing MQF23Na
MRS signal from real samples in the absence of resi
quadrupolar splitting. Further work is in progress to ap
the CWT technique for the analysis ofin vitro and in vivo

TABLE 4
Comparison of the Results Obtained by CWT and MPH
Analysis from a Set of Agarose Gel TQF 23Na MRS Data

T*2f (ms) T*2s (ms) M 0 (au)
PH CWT MPH CWT MPH CWT

(T2f) (T2s)
5.53 5.906 .03 26.45 22.496 .001 179033 1865096 220

Note.MPH method estimatesT2f andT2s values, whereas CWT calcula
the values ofT*2f andT*2s. The results obtained by CWT from 28 FIDs are
mean value6 standard deviation.
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MQF signals and in the presence of quadrupolar splittin
biological tissues.
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